


Facebook Job Engine

Navid Sheikhol – Production Engineer @ FB

Automation @ scale using Python



Manual vs Automated

• We (almost) never do manual work on servers
• Automation gives us a repeatable way to perform actions
• Testable
• Code reviews to validate our plans



Sample automation

• Millions of jobs and many years of runtime a day

• Workflows that use FBJE:
• Kernel and firmware upgrades
• Provisioning of new hardware
• Auto remediation (FBAR)
• Distributing SSL certificates
• Rolling out widely distributed binaries
• Many.. Many.. Many more



Let me tell you a story

• You have to perform a somewhat complicated workflow 
across your entire fleet

• For example, you have to upgrade the kernel on thousands 
of hosts

• Upgrading the kernel takes some time as you have to power 
cycle and wait for machines to come back up



Let me tell you a story

• You want to be able to monitor the rollout (looking at the 
logs)

• The whole thing should run unattended, and it could take 
months

• You want to be notified if there is any problem

• So that you can correct it, then pick up from where it left off



Run a script from a management host
• Maybe you could run a script from your management host

• But this isn't going to scale

• It also means your colleagues won't be able to follow the 
progress

• And what happens if you need to reboot that management 
host, or if it hangs in the middle of it



Problems of that approach

• Hardware volatility: machine where automation runs needs 
to run the entire time

• Visibility: other users may not have visibility over logs and 
status. Leads to conflicts and duplication of work

• Environment: different depending which person/user runs 
the automation



Problems of that approach

• Pause/continue: no easy way to pause (i.e. on failure) and 
resume from same place

• Scalability: single machine will become the bottleneck as 
infrastructure grows



FBJE

FBJE is a service built at Facebook to implement scalable 
automation workflows using Python



Job

• A job represents a unit of work, large or small

• Examples: upgrading the kernel on a host, or draining traffic 
on a cluster

• Jobs can have a parent/child relationship

• Input (entities: Set[str])



JobHandler

• Python class to extend

• Contains the logic to process a 
job

• Every class must implement the 
start() method which is the 
entry point



Stages

• Each JobHandler method is a 
stage of your job

• Stages act like save-points

• If there is a failure in a given 
stage, the job can be retried 
from that point on (or the 
beginning)



Stage transitions / retries

• Every time a job transitions to a new stage we store the 
information in a DB

• If there is a delay between stages, we will reschedule the 
job on any available executor when the times comes

• This means that potentially (and quite likely) it will be 
executed by a different process (no access to prior memory)



Executors

• Pool of Python processes

• Pick up jobs and execute stages

Executor

Executor

Executor Job



Executors

• Pool of Python processes

• Pick up jobs and execute stages

Executor

Executor Job
ZzZ

Executor



Executors

• Pool of Python processes

• Pick up jobs and execute stages

Executor

Executor

Executor

ZzZ
Job



Executors

• Pool of Python processes

• Pick up jobs and execute stages

Executor

Executor Job
Executor



Context
• The only object that gets persisted across stages is the 
self.context dictionary

• Dictionary-like object: automatically serializes and deserializes
objects from a dedicated key/value storage



Logging

• Logging is an important 
aspect of FBJE

• Every JobHandler
provides a 
self.logger object 
which forwards logs to a 
central DB and Hive



Logging

• We auto-generate a number of 
dashboards and alerts which fire 
if there is a sudden spike of 
WARNING/ERROR messages

• Logs are periodically deleted 
from DB



Messaging/Events

• Jobs have the ability to subscribe to event topics and 
generate events for these topics

• Events are delivered asynchronously to subscribed jobs

• This is important to avoid unnecessary polling which 
consumes resources



Architecture

API

Executors

Message
Queue

Metrics Storage Alarm Subscriptions

Log Handlers

Insert/select job

populate metrics

data cleanup

enqueue messages incoming messages

acquire jobs

job results

heartbeat, start jobs, read context

Context*

Watchdog

Database



Batteries included

• We have integrated FBJE with many services internally so it 
comes with a lot of freebies

• Dashboards

• Log aggregation (LogView)

• Many default alarms

• Automatic pushes



Lessons learned
• Shared ownership model
• Executors are “owned” by different teams
• Base JobHandler class owned by FBJE team
• FBJE backend also owned by FBJE team

API

Backend

Executor Executor Executor



Lessons learned

• In the initial design, we used the DB as a queue where 
executors would pull items to work on

• This became unsustainable as the number of executors 
grew

• So we migrated to a dedicated message broker which could 
be compared to RabbitMQ



Lessons learned
• We had many writers synchronously writing to the DB to 

save the jobs' state

• Contention on database became too high, requiring clients 
to retry a lot and sometimes fail

• Now we write the updates to a queue/log, and have a fixed 
number of writers to process updates asynchronously and 
more optimally



Gracias

We are hiring!




