facebook

Facebook Job Engine

Automation @ scale using Python

Navid Sheikhol - Production Engineer @ FB

Manual vs Automated

 We (almost) never do manual work on servers

» Automation gives us a repeatable way to perform actions
» Testable

» Codereviews to validate our plans

Sample automation

* Millions of jobs and many years of runtime a day

 Workflows that use FBJE:

. Kernel and firmware upgrades

. Provisioning of new hardware

. Auto remediation (FBAR)

. Distributing SSL certificates

. Rolling out widely distributed binaries
- Many.. Many.. Many more

Let me tell you a story

* You have to perform a somewhat complicated workflow
across your entire fleet

* Forexample, you have to upgrade the kernel on thousands
of hosts

» Upgrading the kernel takes some time as you have to power
cycle and wait for machines to come back up

Let me tell you a story

* You want to be able to monitor the rollout (looking at the
logs)

* The whole thing should run unattended, and it could take
months

* You want to be notified if there is any problem

» Sothatyou can correctit, then pick up from where it left off

Run a script from a management host

e Maybe you could run a script from your management host

e Butthisisn't going to scale

» |talso means your colleagues won't be able to follow the
progress

* And what happens if you need to reboot that management
host, or if it hangs in the middle of it

Problems of that approach

* Hardware volatility: machine where automation runs needs
to run the entire time

 Visibility: other users may not have visibility over logs and
status. Leads to conflicts and duplication of work

* Environment: different depending which person/user runs
the automation

Problems of that approach

» Pause/continue: no easy way to pause (i.e. on failure) and
resume from same place

» Scalability: single machine will become the bottleneck as
infrastructure grows

FBJE

FBJE is a service built at Facebook to implement scalable
automation workflows using Python

Job

 Ajobrepresents a unit of work, large or small

« Examples: upgrading the kernel on a host, or draining traffic
on acluster

* Jobs can have a parent/child relationship

* Input(entities: Set[str])

JobHandler

class UpgradeKernel(JobHandler) :

» Python class to extend def start(self):

dosomething()
return JobTransition(

* Contains the logic to process a
. next_phase)

job
def next_phase(self):

somethingelse()

» Every class must implement the return JobComplete()

start() method which is the
entry point

Stages

class UpgradeKernel(JobHandler):

 Each)JobHandler methodis a

: lef start(self):
stage of your job AMAalills

d nething()
return JobTransition(

» Stages act like save-points .next_phase)
def_next phasel(self):
 Ifthereisafailureinagiven somethingelse()
stage, the job can be retried return JobCompletel)
from that point on (or the
beginning)

Stage transitions /[retries

* Everytime ajob transitions to a new stage we store the
informationinaDB

 |Ifthereis adelay between stages, we will reschedule the
job on any available executor when the times comes

* This means that potentially (and quite likely) it will be
executed by a different process (no access to prior memory)

Executors

» Pool of Python processes

* Pick up jobs and execute stages

Executor

Executor

Executor

Executors

» Pool of Python processes

* Pick up jobs and execute stages

Executor

Executor

Executor

Executors

» Pool of Python processes

* Pick up jobs and execute stages

Executor

Executor

Executors

» Pool of Python processes

* Pick up jobs and execute stages

Executor

Executor

Executor

Context

* Theonly object that gets persisted across stages is the
self.context dictionary

class ContextProxyDict(MutableMapping):

def _ getitem__ (self, key):
with ZippyDBThriftClient() as zippydb:
return zippydb.get(key)

__setitem_ (self, key, value):
with ZippyDBThriftClient() as zippydb:
return zippydb.set(key, value)

* Dictionary-like object: automatically serializes and deserializes
objects from a dedicated key/value storage

Logging

* Loggingis an important
class FBJELoggingHandler(Handler):

aspect of FBJE def (self, job_id):
self.job_1d = job_1id

° EveryJObHandler def emit(self, record):
: return client.submitLogRecord(
prOVIdes d . job_1id=self.job_1id,
self. logge I ObJECt message=self.format(record),
which forwards logs to a)
central DB and Hive remote_log_handler = FBJELoggingHandler(job_id)

logger.addHandler(remote_log_handler)

Logging

 We auto-generate a number of
dashboards and alerts which fire

if there is a sudden spike of
WARNING/ERROR messages

* Logs are periodically deleted

from DB

Messaging/Events

* Jobs have the ability to subscribe to event topics and
generate events for these topics

» Events are delivered asynchronously to subscribed jobs

* Thisisimportant to avoid unnecessary polling which
consumes resources

Architecture

| i : o
Watchdog s bl |V]ctrics Storage Alarm Subscriptions

data cleanup

Insert/select job
Database

enqueue messages Message incoming messages

Queue acquire jobs

API

heartbeat, start jobs, read context

“Handlers

job results

Batteries included

 We have integrated FBJE with many services internally so it
comes with a lot of freebies

» Dashboards
* Logaggregation (LogView)
* Many default alarms

» Automatic pushes

Lessons learned

e Shared ownership model

. Executors are “owned” by different teams

. Base JobHandler class owned by FBJE team
. FBJE backend also owned by FBJE team

Executor Executor Executor

API

Lessons learned

* Intheinitial design, we used the DB as a queue where
executors would pull items to work on

e This became unsustainable as the number of executors
grew

* Sowe migrated to a dedicated message broker which could
be compared to RabbitMQ

Lessons learned

* We had many writers synchronously writing to the DB to
save the jobs' state

» Contention on database became too high, requiring clients
toretry alot and sometimes fail

 Now we write the updates to a queue/log, and have a fixed
number of writers to process updates asynchronously and
more optimally

Gracias

facebook

We are hiring!

facebook

