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Manual vs Automated

 We (almost) never do manual work on servers

» Automation gives us a repeatable way to perform actions
» Testable

» Codereviews to validate our plans



Sample automation

* Millions of jobs and many years of runtime a day

 Workflows that use FBJE:

. Kernel and firmware upgrades

. Provisioning of new hardware

. Auto remediation (FBAR)

. Distributing SSL certificates

. Rolling out widely distributed binaries
- Many.. Many.. Many more



Let me tell you a story

* You have to perform a somewhat complicated workflow
across your entire fleet

* Forexample, you have to upgrade the kernel on thousands
of hosts

» Upgrading the kernel takes some time as you have to power
cycle and wait for machines to come back up



Let me tell you a story

* You want to be able to monitor the rollout (looking at the
logs)

* The whole thing should run unattended, and it could take
months

* You want to be notified if there is any problem

» Sothatyou can correctit, then pick up from where it left off



Run a script from a management host

e Maybe you could run a script from your management host

e Butthisisn't going to scale

» |talso means your colleagues won't be able to follow the
progress

* And what happens if you need to reboot that management
host, or if it hangs in the middle of it



Problems of that approach

* Hardware volatility: machine where automation runs needs
to run the entire time

 Visibility: other users may not have visibility over logs and
status. Leads to conflicts and duplication of work

* Environment: different depending which person/user runs
the automation



Problems of that approach

» Pause/continue: no easy way to pause (i.e. on failure) and
resume from same place

» Scalability: single machine will become the bottleneck as
infrastructure grows



FBJE

FBJE is a service built at Facebook to implement scalable
automation workflows using Python



Job

 Ajobrepresents a unit of work, large or small

« Examples: upgrading the kernel on a host, or draining traffic
on acluster

* Jobs can have a parent/child relationship

* Input(entities: Set[str])



JobHandler

class UpgradeKernel(JobHandler) :

» Python class to extend def start(self):

dosomething()
return JobTransition(

* Contains the logic to process a
. next_phase)

job
def next_phase(self):

somethingelse()

» Every class must implement the return JobComplete()

start() method which is the
entry point




Stages

class UpgradeKernel(JobHandler):

 Each )JobHandler methodis a

: lef start(self):
stage of your job AMAalills

d nething()
return JobTransition(

» Stages act like save-points .next_phase)
def_next phasel(self):
 Ifthereisafailureinagiven somethingelse()
stage, the job can be retried return JobCompletel)
from that point on (or the
beginning)




Stage transitions /[ retries

* Everytime ajob transitions to a new stage we store the
informationinaDB

 |Ifthereis adelay between stages, we will reschedule the
job on any available executor when the times comes

* This means that potentially (and quite likely) it will be
executed by a different process (no access to prior memory)



Executors

» Pool of Python processes

* Pick up jobs and execute stages
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Context

* Theonly object that gets persisted across stages is the
self.context dictionary

class ContextProxyDict(MutableMapping):

def _ getitem__ (self, key):
with ZippyDBThriftClient() as zippydb:
return zippydb.get(key)

__setitem_ (self, key, value):
with ZippyDBThriftClient() as zippydb:
return zippydb.set(key, value)

* Dictionary-like object: automatically serializes and deserializes
objects from a dedicated key/value storage



Logging

* Loggingis an important
class FBJELoggingHandler(Handler):

aspect of FBJE def (self, job_id):
self.job_1d = job_1id

° EveryJObHandler def emit(self, record):
: return client.submitLogRecord(
prOVIdes d . job_1id=self.job_1id,
self. logge I ObJECt message=self.format(record),
which forwards logs to a )
central DB and Hive remote_log_handler = FBJELoggingHandler(job_id)

logger.addHandler(remote_log_handler)



Logging

 We auto-generate a number of
dashboards and alerts which fire

if there is a sudden spike of
WARNING/ERROR messages

* Logs are periodically deleted

from DB



Messaging/Events

* Jobs have the ability to subscribe to event topics and
generate events for these topics

» Events are delivered asynchronously to subscribed jobs

* Thisisimportant to avoid unnecessary polling which
consumes resources



Architecture
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Batteries included

 We have integrated FBJE with many services internally so it
comes with a lot of freebies

» Dashboards
* Logaggregation (LogView)
* Many default alarms

» Automatic pushes



Lessons learned

e Shared ownership model

. Executors are “owned” by different teams

. Base JobHandler class owned by FBJE team
. FBJE backend also owned by FBJE team

Executor Executor Executor

API




Lessons learned

* Intheinitial design, we used the DB as a queue where
executors would pull items to work on

e This became unsustainable as the number of executors
grew

* Sowe migrated to a dedicated message broker which could
be compared to RabbitMQ



Lessons learned

* We had many writers synchronously writing to the DB to
save the jobs' state

» Contention on database became too high, requiring clients
toretry alot and sometimes fail

 Now we write the updates to a queue/log, and have a fixed
number of writers to process updates asynchronously and
more optimally



Gracias
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