
 🐍 Python in the Land
of Serverless

David Przybilla

dav009 dav009

" " last time in here was
~9 years ago

NLP
Data Engineering

Gov spending dataset

Gov spending dataset
How to access datasets

ColombiaDev

Encuesta de
Salarios

..Ops + Golang + Python..

Tokyo

cool problems to solve

check our booth

..a bit of context…

Roughly 1.5 years ago…

I joined HDE

first week..started looking at projects..

first week..started looking at projects..

Github repos…

first week..started looking at projects..

Github repos…

New project I had to work on…

turns out some projects were built
on “serverless”

so in this talk I will guide you
through:

some of the tools

some of the use cases

some common mistakes

…my opinion…

my first task:
 log stream processing

near realtime

If you have been doing data
pipelines, probably you

would go for:

If you have been doing data
pipelines, probably you

would go for:

If you have been doing data
pipelines, probably you

would go for:

a lot to configure
a lot to manage  

 

a lot to configure
a lot to manage  

 
zookeeper.. 
yarn cluster..

driver instance..
JVM..

HDFS..

a lot to configure
a lot to manage  

 
zookeeper.. 
yarn cluster..

driver instance..
JVM..

HDFS..

you have to make sure
those parts are running

smoothly

you have to make sure
those parts are running

smoothly

I met Jeff

I met Jeff

a coworker
ops engineer

He loves Serverless

And he has good
reasons for it…

he does not want to do
any server management

So Jeff suggested to use
serverless to solve our

stream processing problem

I raised my eyebrow in
doubt:

“Serverless”??

a quite controversial &
confusing term..

“Serverless”

1. Fully managed services, managed on
your behalf

Databases (DynamoDB)..
Storage (s3)..

Queues (kafka as a service, sqs…)
heroku…

“Serverless”

2. Function as a Service (FaaS)
AWS lambda

Azure functions
Kubeless

Google Cloud functions..
Nuclio

..openwhisk….
…many more..…..

Function as a service

Upload your code and it will
run…

Upload your code and it will
run…

you don’t care on top of
what is running..

Upload your code and it will
run…

you don’t care on top of
what is running..

you only focus on your
business logic

 (i) zero administration
- Focus on a single function

 zero administration
- Focus on a single function

- Managed by provider 

 zero administration
- Focus on a single function

- Managed by provider 
 
- You gain peace of mind  

 zero administration
- Focus on a single function

- Managed by provider 
 
- You gain peace of mind  

- cost: more integration with your
vendor(vendor lock-in)

(ii) You are billed by
number of invocations

so how does this looks
like in python?

def handler(event, context):
 # do something
 pass

def handler(event, context):
 # do something
 url = event[‘url’]
 scrape(url)

def handler(event, context):
 # do something
 database = # magic
 username = event[‘username’]
 database.find(username)

so how do I deploy my
function?

in order run your project on
FaaS:

0. define your function
1. package your function
2. upload your package

3. call your function

tools address those steps

 (tools) 0. define function (infrastructure / glue)

 (tools) 0. define function (infrastructure / glue)

- runtime (python, golang, js..)

 (tools) 0. define function (infrastructure / glue)

- memory (128mb, 500?..)
- runtime (python, golang, js..)

 (tools) 0. define function (infrastructure / glue)

- memory (128mb, 500?..)
- runtime (python, golang, js..)

- access to resources

 (tools) 0. define function (infrastructure / glue)

mouse & clicking

- memory (128mb, 500?..)
- runtime (python, golang, js..)

- access to resources

 (tools) 0. define function (infrastructure / glue)

mouse & clicking

- memory (128mb, 500?..)
- runtime (python, golang, js..)

- access to resources

 (tools) 0. define function (infrastructure / glue)

mouse & clicking

- memory (128mb, 500?..)
- runtime (python, golang, js..)

- access to resources

 1. package your function

 1. package your function

 your function
code

+ dependencies

 1. package your function

 your function
code

“deploying it”

 2. upload package

 3. call your function

 3. call your function

“what triggers it?”

 3. call your function

“what triggers it?”
function is called whenever:

 3. call your function

“what triggers it?”

url gets hit..
an object is uploaded to s3..
a record is added to your database..
while queue is not empty..

function is called whenever:

 3. call your function

Deeply entangled on your cloud
provider services

(infrastructure /glue)

 3. call your function

Deeply entangled on your cloud
provider services

mouse & clicking

tooling address those steps

deploying:
infrastructure + code

back to my story..

back to my story..

first week..
started looking at repos..

One of them is an API

something.com/endpointA
something.com/endpointB
something.com/endpointC

my team was an early adopter of this
technology

they stitched projects with the tools
available back then

request to
urlA

request to
urlA

def a(..)request to
urlA

def a(..)

def b(..)

request to
urlA

request to
urlB

def a(..)

def b(..)

def c(..)

request to
urlA

request to
urlB

request to
urlC

deploy: makefiles

deploy: makefiles

glue:

3 functions to deploy

3 functions to deploy
3 functions to package

3 functions to deploy
3 functions to package

lots of glue :
- many pieces to move
- to worry about
- hard to test

changing this kind of trigger(url)
on terraform is painful

changing this kind of trigger(url)
on terraform is painful

running terraform is scary
you might destroy other infrastructure

if for whatever reason you want to
move to non-serverless.. it is harder..

if for whatever reason you want to
move to non-serverless.. it is harder..

why?

because all that glue that triggers the functions

you have to implement that glue in a different way

3 different lambdas..
also make people structure their

project like 3 independent projects..

with tools available today
you can avoid this..

any request
to

something.com

http://something.com

wsgi wrapper
(like a flask app)

any request
to

something.com

http://something.com

wsgi wrapper
(like a flask app)

any request
to

something.com

wsgi wrapper?

http://something.com

wsgi wrapper
(like a flask app)

any request
to

something.com

translates requests arriving to def handler(..) into wsgi
requests

wsgi wrapper?

http://something.com

wsgi wrapper
(like a flask app)

any request
to

something.com

translates requests arriving to def handler(..) into wsgi
requests

wsgi wrapper?

it means we can use tools like flask, django ..

http://something.com

you can use all tools already available and all that
come with them

testing is easier

you can use all tools already available and all that
come with them

testing is easier

you can make your api with the same
tools, and have serverless “for free”

you can use all tools already available and all that
come with them

testing is easier

you can make your api with the same
tools, and have serverless “for free”

minimal implementation of that
wrapper (python3) is available at:

https://github.com/slank/awsgi

so if you have a dummy
flask app

from flask import (
 Flask,
 jsonify,
)

app = Flask(__name__)

@app.route(‘/endpointB’)
def endpoint_b():
 # …
 return jsonify(status=200, message='OK')

to make it serverless you just need to
add this function:

def handler(event, context):
 return awsgi.response(app, event, context)

to make it server less you just need to
add this function:

def handler(event, context):
 return awsgi.response(app, event, context)

to make it server less you just need to
add this function:

wsgi app

- can run it locally

- can run it locally

- easy to test routing

- less glue

- can run it locally

- easy to test routing

API building serverless
tools:

API building server less
tools:

serverless
chalice
zappa

…
there are more..many..

https://github.com/serverless/serverless
https://serverless.com/

Serverless

https://github.com/serverless/serverless
https://serverless.com/

serverless

Good:
- many plugins
- got funding
- particularly good when you are building apis
- it is not sluggish (for the given use case)
- provide you easy way to handle environments (stg, prd)
- great community

serverless

Bad:
no plan building:

serverless

Bad:
no plan building:

serverless

deploying:
infrastructure + code

Bad:
no plan building:

serverless

 it does not tell you what will change before deploying

deploying:
infrastructure + code

Bad:

serverless

changing something in config file can leak infrastructure

It is dangerous to leave infrastructure leaking behind

How to use it?

serverless

How to use it?

serverless

1. define glue in .yml file

How to use it?

serverless

2. do `sls deploy`
1. define glue in .yml file

serverless

 .yml file

serverless

 .yml file
• I want a function with this memory..
• I want a function with this name…
• I want it to get called when X and Y happens

serverless

 `sls deploy`
• Package + upload

serverless

serverless has a lot fo plugins that you can add to
your .yml file.

don’t use it to manage infrastructure.

serverless

serverless “applications”

> serverless install --url <service-github-url>
> sls deploy

code + glue + infrastructure
i.e: serverless service to get a slack bot via FaaS

Chalice
https://github.com/aws/chalice

- comes with “wsgi wrapper”
- purely focused on AWS
- aimed at API particular case

> chalice new-project my_sample_project
> chalice deploy

How to use it?

Zappa

1. define glue in .json file

How to use it?

Zappa

2. some of the glue code is defined
as python decorators

1. define glue in .json file

@task
def make_pie():
 """ This takes a long time! """
 ingredients = get_ingredients()
 pie = bake(ingredients)
 deliver(pie)

@task
def make_soup():
 ingredients = get_ingredients()
 soup = bake(ingredients)
 deliver(soup)

@task

How to use it?

Zappa

it has some cool decorators
it lacks plugins/addons

good
if you are building APIs
if you have lots of cron/async calls

Another use case..

you have a lot of data to
process in batch

you have a lot of data to
process in batch

text..
numbers..

map & reduce..right?

map & reduce..right?
get me a spark cluster

use pyspark ..done

compute to TB datasets across hundreds of functions

f

fclean wikipedia

etl

data preprocessing

count frequencies

this is a great use case for FaaS

this is a great use case for FaaS

pywren
https://github.com/pywren/pywren

benchmark of 

- 80 GB/sec read  
- 60 GB/sec write

pywren

No knowledge of AWS required

pywren

No knowledge of AWS required

pywren

No large (expensive) cluster up

No knowledge of AWS required

pywren

No large (expensive) cluster up

Using vanilla python

> pywren-setup

pywren

> pywren-setup

pywren

essentially :
1. takes a python function (creates a FaaS)

> pywren-setup

pywren

essentially :
1. takes a python function (creates a FaaS)
2. takes data and uploads it to s3

> pywren-setup

pywren

essentially :
1. takes a python function (creates a FaaS)
2. takes data and uploads it to s3
3. runs your python function in parallel on the data
uploaded to s3

def add_one(x):
 return x + 1

pywren

def add_one(x):
 return x + 1

[0, 1…9]

pywren

def clean_text(text):
 # clean text
 return cleaned_text

pywren

def clean_text(text):
 # clean text
 return cleaned_text

pywren

wikidump (100G)

pywren

def add_one(x):
 return x + 1

pywren

def add_one(x):
 return x + 1

creates lambda

pywren

def add_one(x):
 return x + 1

creates lambda

[0, 1…9]

pywren

def add_one(x):
 return x + 1

creates lambda

[0, 1…9]
uploads data
to

part1

pywren

def add_one(x):
 return x + 1

creates lambda

[0, 1…9]
uploads data
to

part1

part2

pywren

def add_one(x):
 return x + 1

creates lambda

[0, 1…9]
uploads data
to

part1

part2

part3

pywren

def add_one(x):
 return x + 1

[0, 1…9]

pywren

def add_one(x):
 return x + 1

[0, 1…9]

add_one(0)

pywren

def add_one(x):
 return x + 1

[0, 1…9]

add_one(0) add_one(1)

pywren

def add_one(x):
 return x + 1

[0, 1…9]

add_one(0) add_one(1) add_one(2)

…..

pywren

def add_one(x):
 return x + 1

[0, 1…9]

add_one(0) add_one(1) add_one(2)

…..

pywren

def add_one(x):
 return x + 1

[0, 1…9]

add_one(0) add_one(1) add_one(2)

…..

pywren

def add_one(x):
 return x + 1

[0, 1…9]

add_one(0) add_one(1) add_one(2)

…..

pywren

how does it look like ?

import pywren

xlist = np.arange(10) //data

pywren

how does it look like ?

import pywren

xlist = np.arange(10) //data

pywren magic
wrenexec = pywren.default_executor()
futures = wrenexec.map(addone, xlist)

pywren

how does it look like ?

import pywren

xlist = np.arange(10) //data

pywren magic
wrenexec = pywren.default_executor()
futures = wrenexec.map(addone, xlist)

f.result() blocks until s3 file result is available
print [f.result() for f in futures]

pywren

how does it look like ?

import pywren

xlist = np.arange(10) //data

pywren magic
wrenexec = pywren.default_executor()
futures = wrenexec.map(addone, xlist)

f.result() blocks until s3 file result is available
print [f.result() for f in futures]

> python sample.py

pywren

good for:

- ETL tasks..
- Scraping..
- Data crunching in general..

similar to pywren

https://github.com/qubole/spark-on-lambda

spark-on-lambda

similar to pywren

https://github.com/qubole/spark-on-lambda

spark-on-lambda

looks experimental though

similar to pywren

https://github.com/qubole/spark-on-lambda

spark-on-lambda

looks experimental though
same as spark..
just executors are lambda functions

Scanning 1 TB of Data
1000 Lambda executors took 47s
cost turns out to be $1.18.

spark-on-lambda

Scanning 1 TB of Data
1000 Lambda executors took 47s
cost turns out to be $1.18.

spark-on-lambda

on regular spark
50 r3.Xlarge instances..
2 or 3 mins just to setup + start

remarks..

no multiprocessing..
module

common mistakes

structure your project as
any other python project

structure your project as
any other python project

don’t think of it as FaaS

if your project has many
FaaS

if your project has many
FaaS

it is a single project, with
different entry points

immutability

FaaS is built on top of
containers

containers for the same function
sometimes gets reused..

db_connection = connect(something)

def handler(a,b):
 db_connection.query(something(a))

> db_connection = connect(something)

def handler(a,b):
 db_connection.query(something(a))

1st run

db_connection = connect(something)

> def handler(a,b):
 db_connection.query(something(a))

1st run

db_connection = connect(something)

> def handler(a,b):
 db_connection.query(something(a))

2nd run

as in any project

as in any project

mutable globals are not desirable

list_of_users = [‘admin’]
def handler(a,b):
 list_of_users = list_of_users + a[‘user’]
 do_something(list_of_users)

list_of_users = [‘admin’]
def handler(a,b):
 list_of_users = list_of_users + a[‘user’]
 do_something(list_of_users)

list_of_users = [‘admin’]
def handler(a,b):
 list_of_users = list_of_users + a[‘user’]
 do_something(list_of_users)

[‘admin’, user1]

intended input to do_something
[‘admin’, user1]

do_somethingactual input to

list_of_users = [‘admin’]
def handler(a,b):
 list_of_users = list_of_users + a[‘user’]
 do_something(list_of_users)

[‘admin’, user1]

intended input to do_something
[‘admin’, user1]

do_somethingactual input to

[‘admin’, user2]

do_somethingintended input to

list_of_users = [‘admin’]
def handler(a,b):
 list_of_users = list_of_users + a[‘user’]
 do_something(list_of_users)

[‘admin’, user1]

intended input to do_something
[‘admin’, user1]

do_somethingactual input to

[‘admin’, user2]

do_something

[‘admin’, user1, user2]

do_somethingactual input to intended input to

list_of_users = [‘admin’]
def handler(a,b):
 list_of_users = list_of_users + a[‘user’]
 do_something(list_of_users)

[‘admin’, user1]

intended input to do_something
[‘admin’, user1]

do_somethingactual input to

[‘admin’, user2]

do_something

[‘admin’, user1, user2]

do_somethingactual input to intended input to

don’t mutate

..security..

Dependencies.. please
update them

delete old functions

you don’t pay if you don’t use them
so you don’t get reminded in your bill

if you don’t use
them, delete them

sounds easy..but..in a large organisation:
- you got no idea who is the owner

sounds easy..but..in a large organisation:
- you got no idea who is the owner
- is it safe to delete?

straight up your permissions

only give needed permissions

DDoS are wallet attacks

concluding

lots of new tools are yet
to come…

serverless provides a peace of mind.:
it will be running
it won’t be down

but you agree on going full on using your
cloud provider features

There is a lot of glue..
lots of events here and

there….

serverless is [in my opinion]
cheaper not simpler

data crunching : yes
handling small events: yes

total complexity of your
system might grow

this is your extra
complexity: glue, wiring

glue is hard to test

this is the hard part..
 integration testing

does the event triggers the
expected behaviour?

it is getting more
popular..

many surveys seems to
indicate FaaS adaption is

as fast as that of containers

I guess new tools will
help tame this

complexity

I guess now you are
wondering.

should I use server less or not?

If you find yourself in any
of these situations:

you have a developer complaining
about having to spin up infrastructure
before they can get something done

maybe you are a data scientist
annoyed by how difficult is to

run your experiment

then maybe is worth
trying it

by the way, yes..

we built our stream
processing system on top of

FaaS

Gracias!

dav009 dav009

